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Abstract
We apply to transition metal monoxides the self-interaction corrected (SIC) local spin density
approximation, implemented locally in the multiple scattering theory within the
Korringa–Kohn–Rostoker (KKR) band structure method. The calculated electronic structure
and in particular magnetic moments and energy gaps are discussed in reference to the earlier
SIC results obtained within the linear muffin-tin orbital atomic sphere approximation band
structure method, involving transformations between Bloch and Wannier representations, in
order to solve the eigenvalue problem and calculate the SIC charge and potential. Since the
KKR method can be easily extended to treat disordered alloys, by invoking the coherent
potential approximation (CPA), in this paper we compare the CPA approach and supercell
calculations to study the electronic structure of NiO with cation vacancies.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Density functional theory (DFT) forms the basis of most
first-principles electronic structure calculations of solids [1].
In particular, the commonly used local (spin) density
approximation (L(S)DA) to DFT has been extremely
successful in describing bonding properties of solids,
especially the conventional metals and their alloys. However,
due to the local approximation, describing correlations at the
level of the homogeneous electron gas, LSDA (LSD: local
spin density) or even the semi-local, generalized gradient
approximation (GGA) often fails for systems like transition
metal monoxides (TMOs) containing partially filled TM d-
shells. The same is true for rare earths and heavier actinides
and their compounds, where the f-shells are partially filled. It
is the strong Coulomb repulsion among the electrons in those

partially filled d- and f-shells that is not well represented within
LSDA and GGA. For TMOs, LSDA either fails to describe
their insulating ground state or predicts much too small band
gaps and magnetic moments [2–4]. This is associated with an
unphysical self-interaction of an electron with itself, occurring
in the Hartree term of the LSDA energy functional on account
of the local approximation applied to the exchange–correlation
energy functional. This self-interaction becomes important
for localized electrons like d electrons of TM elements in
their monoxides. In the latter, the self-interactions push
the localized electron orbitals into the valence band, usually
resulting in too strong a hybridization with the other valence
electrons. This problem was recognized many years ago
and a remedy was proposed by Perdew and Zunger [5] to
simply subtract the spurious self-interactions from the LSDA
functional, orbital by orbital, for all the localized states.
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The resulting SIC–LSDA approach treats both localized and
itinerant electrons on equal footing, leading to split d- and f-
manifolds and describing the dual character of an electron.

The SIC–LSDA method has been successfully applied
to numerous systems containing localized d and/or f
electrons [6–16]. In most cases the so-called full SIC (FSIC)
implementation was used [17, 18], involving repeated
transformations between Bloch and Wannier representations
to, respectively, solve the generalized eigenvalue problem,
and calculate orbital dependent charges and potentials. Since
the self-interaction correction is local in nature with the
electronic states affected by SIC localized to a high degree
on a site, the so-called local SIC (LSIC) has recently been
implemented and successfully applied to some f electron
materials [15, 16]. This LSIC approach, taking advantage
of multiple scattering theory, has been implemented within
the Korringa–Kohn–Rostoker (KKR) band structure method,
which offers straightforward generalizations to treating various
types of chemical, charge and spin disorder through the
coherent potential approximation (CPA) and disordered local
moments (DLM) [19] theory. Due to an easy access to
the Green’s function, the KKR method is also well suited
for studying surfaces, interfaces and other low dimensional
systems. Finally, the LSIC implementation in KKR allows for
finite temperature calculations and therefore is very useful for
studying finite temperature phase diagrams [15].

The motivation for the present paper is to explore the
consequences of applying LSIC to study the ground state
properties of TMOs. The latter are the prototypical d electron
materials for studying strong correlation effects and have been
extensively studied both experimentally and theoretically by a
number of methods [7, 20–25]. One of the goals of this paper
is to demonstrate that the LSIC scheme can be as successfully
applied to systems containing localized 3d electrons, as it
was for the systems with localized 4f electrons. In the case
of TMOs, these are the 3d electrons of the transition metal
elements that are affected by SIC.

As already mentioned, a number of theoretical methods
have been used to study TMOs the most popular being the
LDA + U method [20, 26–28]. It treats Coulomb interactions
between electrons better than LSDA, by explicitly adding to the
LSDA Hamiltonian a Hubbard term with the on-site Coulomb
interaction U . The latter is usually treated as an adjustable
parameter and chosen to optimize agreement with experiment.
For TMOs, the approach works well and for NiO, with the
appropriate choice of the U parameter, the results have been
shown to be in very good agreement with those of the FSIC
approach [21]. The LDA + U method has also been applied
to study surface properties of NiO [29, 30] and MnO [31], as
well as exchange interactions in some TMOs [31, 32]. Besides
LDA + U and SIC schemes, a class of hybrid functionals has
recently been introduced. These functionals treat Coulomb
correlations beyond LSDA, accomplished by incorporating
some fraction of the exact exchange. The most well known
among them is the B3LYP functional [33]. There have been a
number of recent applications of various hybrid functionals to
TMOs [22–25].

Whereas all the above mentioned approaches provide a
static treatment of the correlation problem, the dynamical mean

field theory (DMFT) [34, 35] allows to systematically include
local dynamical correlations into lattice models. However,
most applications to date invoke the Hubbard Hamiltonian,
via the so-called LDA + DMFT implementation, and thus
inherit the uncertainties associated with the LDA + U
method. Recent LDA + DMFT calculations [36] for NiO,
with a suitable choice of U , provide good agreement with
angle resolved photoemission spectroscopy. Finally, the GW
method, in various implementations, has also been used to
study TMOs [37–40]. However, the degree of its success
depends on the starting band structure and the LDA band
structure is a poor starting point.

The paper is organized as follows. In section 2, we
elaborate on the local implementation of the SIC formalism
within the KKR band structure method. In section 3, numerical
details of the calculations are discussed. Section 4 is devoted
to an extensive discussion of the LSIC results for NiO to
demonstrate LSIC at work. In section 5, we review the ground
state properties of all the 3d TMOs studied with LSIC, in
comparison with experiment and the early FSIC results. In
section 6, we consider cation vacancies in NiO using CPA,
in addition to the earlier supercell study within the full SIC
implementation [10]. The paper is summarized in section 7.

2. Formalism

2.1. Basic SIC–LSDA equations

To present the basics of the SIC–LSDA method, we start
from the LSDA total energy functional, in the Kohn–Sham
representation [1], which is (in Rydberg units) given by

ELSDA[n↑, n↓] =
occ∑

α

〈φα| − ∇2|φα〉 + Eext[n]

+ EH[n] + ELSDA
xc [n̄], (1)

where φαs are the Kohn–Sham orbitals, giving rise to the
orbital densities nα = |φα|2, with α being a combined index
labelling the orbital and spin σ (↑ or ↓), n̄ stands for the spin
densities n↑, n↓, and the total density is defined as n = n↑+n↓.
Here Eext is the external potential energy functional due to ions,
EH is the Hartree energy functional

EH[n] =
∫

d3r
∫

d3r ′ n(r)n(r′)
|r − r′| , (2)

and ELSDA
xc is the LSD approximation to the exchange–

correlation energy functional, which is the source of the
spurious self-interaction [5]. The exact exchange–correlation
energy has the property that it cancels exactly the Hartree
energy for any single-electron density nα , namely

EH[nα] + Eexact
xc [n̄α] = 0, (3)

where n̄α represents the pair of spin densities (nα, 0) or (0, nα),
depending on the spin σ of the state α. Correcting the LSDA
energy functional for the unphysical self-interaction error, by
subtracting explicitly the self-Coulomb and self-exchange and
self-correlation energy of all the occupied orbitals, restores
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the above property, but leads to an orbital dependent energy
functional

ESIC−LSDA[{nα}] = ẼLSDA[n̄]
−

occ∑

α

(EH[nα] + ELSDA
xc [n̄α]), (4)

with ẼLSDA[n↑, n↓] having the same form as ELSDA[n↑, n↓],
however, the orbitals setting up the orbital densities, nα , in
equation (4) are no longer the usual Kohn–Sham orbitals.
The latter are replaced by φ̃α orbitals that minimize the self-
interaction corrected energy functional. Varying the above
SIC–LSDA energy functional with respect to the orbital spin
densities, with the constraint that the φ̃αs form a set of
orthonormal functions, one gets the SIC–LSDA generalized
eigenvalue equations

Hα|φ̃α〉 = (−∇2 + V SIC−LSDA
eff,ασ (r)

) |φ̃α〉
= (

H0σ + V SIC
α (r)

) |φ̃α〉 =
∑

α′
λαα′ |φ̃α′ 〉, (5)

with H0σ being the orbital independent LSDA Hamiltonian.
The Lagrangian multipliers λαα′ are used to secure the
fulfilment of the orthonormality constraint. Due to the orbital
dependent potential, the SIC energy functional is not stationary
with respect to infinitesimal unitary transformations among the
orbitals. The so-called localization criterion

〈φ̃β |V SIC
α − V SIC

β |φ̃α〉 = 0 ∀(α, β) (6)

has to be fulfilled to ensure that the solutions of the SIC–LSDA
equations (5) are most optimally localized to reach the absolute
minimum of the SIC–LSDA functional (4).

The orbital dependent potential V SIC−LSDA
eff,ασ is given by

V SIC−LSDA
eff,ασ (r) = Vext(r) + VH[n](r) + V LSDA

xcσ [n̄](r)︸ ︷︷ ︸
V LSDA

eff,σ

− VH[nα](r) − V LSDA
xc,σ [n̄α](r)︸ ︷︷ ︸

V SIC
α (r)

, (7)

the external lattice potential Vext(r), and

VH[n](r) = 2
∫

d3r ′ n(r′)
|r − r′| , (8)

V LSDA
xc,σ [n↑, n↓](r) = δELSDA

xc [n↑, n↓]
δnσ

. (9)

In order to implement the above SIC–LSDA methodology,
and solve the underlying generalized eigenvalue equations,
one can either choose the direct minimization of the energy
functional (4) with respect to orbitals, using the steepest
descent method [6, 18], or the so-called unified Hamiltonian
formulation [7, 18]. Both approaches have been implemented
within the linear muffin-tin orbital (LMTO) band structure
method in the atomic sphere approximation (ASA) [41, 42],
i.e., both approaches start from the band representation of the
electronic structure. This, as mentioned earlier, means that
repeated transformations between the Bloch representation, to
solve the generalized eigenvalue problem, and the Wannier
representation, to calculate nα and construct V SIC

α (r), have

to be invoked in every step of the self-consistency cycle. It
is this change of representations which complicates the self-
consistency problem of the self-interaction corrected LSDA.
The technical details of these SIC–LSDA implementations,
referred to as FSIC, can be found elsewhere [18].

2.2. Multiple scattering theory and LSIC implementation

The so-called ‘local’ implementation of the SIC–LSDA
methodology, in the framework of multiple scattering theory,
has already been discussed by Lüders et al [15]. Here we
repeat the main concepts and formulae for completeness.
The important difference of this LSIC implementation, with
respect to the FSIC approach, is working with the scattering
phase shifts, describing scattering properties of the individual
atoms in a solid, treated within multiple scattering theory
implemented in the Korringa–Kohn–Rostoker (KKR) method.
Core electron states, represented as bound states at negative
energies, are characterized by abrupt jumps by π of their
generalized complex phase shifts at those energies. The
localized valence states, like e.g. 3d electron states in transition
metal elements, also show sharp jumps by π but at positive
energies, referred to as resonances. The itinerant states, on the
other hand, are characterized by slowly varying phase shifts.
The idea behind the local implementation of SIC–LSDA in the
KKR band structure method is to associate SIC with the on-
site scattering potential through modifying the corresponding
resonant scattering phase shifts. It is the realization of this idea
that lies at the heart of LSIC scheme.

The central quantity of the multiple scattering theory is the
Green’s function which for the scalar-relativistic case is given
by

Gσ (r, r′; ε) =
∑

L L ′
Z̄ i

Lσ (ri ; ε) τ
i j
σ L L ′(ε) Z j

L ′σ (r′
j; ε)

−
∑

L

Z̄ i
Lσ (r<; ε)J i

Lσ (r>; ε)δi j . (10)

Here r is given by r = Ri + ri , where ri is a vector inside
the cell at Ri , L = (l, m) denotes the combined index for
the angular momentum l and magnetic m quantum numbers,
while r<(r>) is the vector smaller (larger) in magnitude from
the pair (r, r′). The functions Z̄ i

Lσ , Z i
Lσ , J i

Lσ are expressed by
the regular (Z i

Lσ ) and irregular (J i
Lσ ) solutions of the radial

Schrödinger equation at a given (complex) energy ε and the
complex spherical harmonics YL (r̂) as

Z i
Lσ (ri ; ε) = Z i

lσ (ri ; ε)YL(r̂i ) (11)

Z̄ i
Lσ (ri ; ε) = Z i

lσ (ri ; ε)Y ∗
L (r̂i) (12)

J i
Lσ (ri ; ε) = J i

lσ (ri ; ε)YL(r̂i ). (13)

The scattering-path matrix τ is given by

τ (ε) = [
t−1(ε) − g(ε)

]−1
, (14)

where the underlined symbols stand for matrices in angular
momentum, L, and atomic site indices. The structural Green’s
function, g(ε), describes the free propagation between the
scattering centres, and the t matrix denotes the single-site
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scattering and is related to the phase shifts, δi
l , discussed above,

via

t i
l (ε) = − 1

κ
sin δi

l (ε)e
iδi

l (ε), (15)

with κ equal to
√

ε.
The total valence charge density, per spin σ , can be

calculated from the Green’s function as

nσ (r) = − 1

π

∫ EF

EB

dε Im Gσ (r, r; ε), (16)

where EB and EF denote the bottom of the valence band
and the Fermi energy, respectively. In the standard LSDA
calculations, this charge density is used to construct the new
effective potential V LSDA

eff,σ (cf equation (7)) for the next iteration
of the self-consistency cycle.

In the SIC–LSDA method, one aims to extract from
equation (16) those contributions which originate from
localized electron states, characterized by sharp resonances in
the scattering phase shifts and therefore long Wigner delay
times, as they will be associated with large self-interaction
errors. These are the scattering states to which SIC will be
applied. Since the angular momentum decomposition used
in (10) is adapted to spherical symmetry, we need to work
in the representation which reflects the local symmetry of the
scattering centre under consideration. To accomplish this, we
apply a unitary transformation to the spherical harmonics in
the angular momentum decomposition, such that the angular
momentum diagonal block of the on-site scattering-path matrix
becomes diagonal. This unitary transformation is defined by

∑

m1,m2

U †
(lm̃,lm1)

τ i i
(lm1,lm2)

(ε) U(lm2,lm̃′) = δm̃m̃′ τ̃ ii
L̃,L̃ ′(ε), (17)

while the regular solution in this symmetry adapted
representation assumes the form

Z i
L̃σ

(ri ; ε) =
∑

m1

U †
(lm̃,lm1)

{Z i
lm1σ

(ri ; ε)Ylm1 (r̂i)}, (18)

and similarly for the irregular solution. This corresponds to
an expansion into lattice harmonics, i.e., linear combinations
of spherical harmonics of the same quantum number l,
forming the basis functions of the respective irreducible
representations.

Due to the employed muffin-tin or atomic sphere
approximation in KKR, only the spherically symmetric parts of
the SIC charges and potentials are considered. Because of this,
only the spherical part of the Green’s function matters, which
in the symmetrized representation becomes diagonal with
respect to L̃ = (l, m̃), which defines the so-called scattering
channel. Hence, we can decompose the spin resolved charge
density (equation (16)) into its L̃ components and define the
charge of a given channel, characterized by its site index i ,
symmetry index L̃ and spin σ , as

nSIC
i L̃σ

(r) = − 1

π

∫ E2

E1

dε Im GL̃,σ (r, r; ε), (19)

where the energies E1 and E2 lie, respectively, slightly below
and above the energy of the resonance in the channel L̃σ

at site i . In principle, the integration range should enclose
the localized state only, but for simplicity we use the energy
contour encompassing the whole valence band, namely ranging
from the bottom of the valence band to the Fermi energy. From
these channel densities, we can construct the corresponding
SIC potentials, which together with the LSDA potential, define
the effective SIC–LSDA potential, namely

V SIC−LSDA
eff,i L̃σ

(r) = V LSDA
eff,σ (r)−VH[nSIC

i L̃σ
](r)−V LSDA

xc [nSIC
i L̃σ

, 0](r).
(20)

This gives rise to the single scattering matrix of the form

t i,corr
L̃σ

= t i
L̃σ

(1 − δL̃,L̃cδσ,σ c) + t i,SIC−LSDA
L̃cσ

δL̃,L̃cδσ,σ c, (21)

with some of the channels, marked by L̃cσ c, being self-
interaction corrected, and t i

L̃σ
being the t-matrix calculated

from the effective LSDA potential, V LSDA
eff,σ (r). Here t i,SIC−LSDA

L̃σ
is calculated from the effective SI-corrected LSDA potential,
V SIC−LSDA

eff,i L̃σ
(r). The corrected tcorr-matrix is then used in

equation (14) to calculate the new, SI-corrected, scattering-
path matrix τ̃ . From the latter the new SIC–LSDA charge
density is calculated, and the process is iterated until self-
consistency is reached. Since we are dealing with resonances,
the localization criterion used for optimizing Wannier orbitals
in FSIC, giving rise to the additional self-consistency cycle, is
not in operation in LSIC.

One of the important advantages of the SIC–LSDA
formalism is that one can realize and study different valence
configurations of the elements under consideration, and this is
valid for both FSIC and LSIC schemes. The nominal valence,
Nval, is defined as

Nval = Z − Ncore − NSIC, (22)

where Z is the atomic number, Ncore is the number of core
(and semicore) states and NSIC is the number of self-interaction
corrected states. The ground state valence is the one defined by
the ground state energy. One has to mention that it has to be
tested which states need to be corrected (e.g. equation (21))
in order to find the ground state and the ground state valency.
How it is done in practice will be demonstrated for NiO in
section 4.

Finally, as already mentioned, the multiple scattering
formulation of SIC, naturally lends itself to various extensions
like the coherent potential approximation (CPA), [43–46]
allowing study of random alloys, within the resulting KKR–
CPA method. In section 6, we will discuss an application
of LSIC, in combination with CPA, to study the influence
of vacancies on the Ni-sublattice in NiO on its electronic
structure.

3. Computational details

The 3d transition metal monoxides crystallize in the rocksalt
structure (B1, Fm3̄m, space group 225), consisting of
two fcc sublattices, shifted with respect to each other by
[a/2, 0, 0]. One of the sublattices is occupied by the
oxygen atoms and the other one by the transition metal
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elements. At low temperatures, TMOs show a small
(<2%) lattice distortion, which is rhombohedral for MnO,
FeO and NiO (cf [47]), but tetragonal for CoO [48].
In this paper, however, we do not consider these lattice
distortions. Above the transition temperature, the structure
of TMOs is cubic. The ground state magnetic structure is
of the antiferromagnetic type II (AFII) [49], originating from
Anderson-type superexchange. The AFII structure consists
of an antiferromagnetic stacking of (111) planes, of parallel
moments, along the [111] direction. The oxygen atoms are
frustrated by symmetry, so that they do not contribute to the
total magnetic moment. To realize the AFII structure in the
calculations, a unit cell consisting of two formula units was
used. The crystal potentials of the TMO systems used in
the LSIC calculations were constructed based on the atomic
sphere approximation (ASA). The ASA radii of the TM and
oxygen atoms were chosen to be equal, because the LSIC
results were not crucially dependent on the relative division
of space between the various species. In addition, the so-called
empty spheres were used to obtain a better space filling, as well
as to minimize the effect of the ASA overlap. The actual ASA
radii for TM and oxygen atoms were chosen to be 0.2895a and
for empty spheres 0.1774a, with a being the lattice parameter
of a given compound.

The analytical expression for the KKR Green’s function
given by equation (10) is exact in the limit of L = (l, m) →
∞, and can be evaluated at any energy. In practice, however,
a reasonable cut-off in the angular momentum summations
has to be imposed, which in all the calculations presented in
this paper was lmax = 3, for all the sites. For the oxygen
atoms, the 2s states were treated as valence states since they
form extended Bloch states. Regarding energy integrals, they
were performed in the complex plane and the contour used
was a semi-circle, with points on the contour chosen using the
Gaussian quadrature. In most cases, 32 energy points were
used. The integrals over the Brillouin zone were performed
using a special k-points method.

Finally, a comment on the use of Lloyd’s formula in
all the calculations of this paper. Since the LSIC approach
is based on the calculation of the Green’s functions, such
quantities as density of states (DOS), integrated density of
states, Fermi energy, charge density, total charge, as well as
other observables, are evaluated from these Green’s functions
by the appropriate integrations. We know from experience that
the Fermi energy evaluated from the integrated DOS, obtained
by integrating the imaginary part of the Green’s function
over space and energy, is not accurate due to slow angular
momentum convergence, and may give rise to systematic
errors for semiconductors and insulators. To avoid such
errors one can use Lloyd’s formula [50], which allows direct
calculation of the differences between the integrated densities
of states of the system under consideration and some properly
chosen reference system, leading to much more accurate
Fermi energies in particular for semiconductors and insulators.
Details of an efficient implementation of Lloyd’s formula used
in all the calculations presented here have been presented
elsewhere [51].

4. Application to NiO

In this section we demonstrate, using NiO as an example,
how LSIC operates in practice. NiO is very probably the
most studied system among the transition metal monoxides,
both experimentally and theoretically. The earliest SIC–LSDA
applications to NiO, as well as other TMOs [6, 7], based on
the FSIC approach, assumed the AFII magnetic order and
obtained a good description of its electronic structure, with
a considerably large energy band gap and much improved
magnetic moments as compared to LSDA. In a later study
of NiO, using a larger set of LMTO basis functions as well
as much improved space filling and reduced ASA overlap
error due to the introduction of the so-called empty spheres, a
good description of the bonding properties, band gap, magnetic
properties and EELS spectra was obtained, in agreement with
experiment and an LDA + U calculation, with a reasonable
value of U [21]. That the AFII structure was not crucial
for the FSIC calculations to obtain an insulating state in NiO
was shown by Ködderitzsch et al [9] who considered different
magnetic orders and in particular AFII, AFI and ferromagnetic
(FM) structures. The AFI structure is characterized by
an antiferromagnetic stacking of ferromagnetic Ni planes
along the [100] direction. For all the studied magnetic
orders, an insulating solution with a substantial band gap was
obtained [9], unlike in the case of LSDA, where neither AFI
nor FM states could be stabilized, and for the AFII scenario,
only a tiny band gap was obtained. Based on these total
energy calculations and mapping onto a Heisenberg model,
Ködderitzsch et al [9] also calculated exchange interactions of
bulk NiO and at the NiO(100) surface, and found them to be
in good agreement with experiment. Recently, by combining
LSIC with DLM, it has also been shown that in NiO, the
energy band gap survives above the Néel temperature, with the
value not much different than the one obtained for the ground
state AFII structure [52]. Although the magnitude of the
band gap, calculated using SIC, seems to be slightly affected
by the type of magnetic order due to the apparent change
in hybridization between the Ni 3d bands and predominantly
oxygen 2p-like valence band, it is not the exchange field but
the on-site Coulomb repulsion that drives the insulating state
in NiO and other TMOs. Therefore, in the remainder of this
section we shall concentrate solely on the electronic structure
and magnetic moments calculated from LSIC for the ground
state, AFII, structure of bulk NiO.

From ionic considerations, it is obvious that Ni-ion in
NiO will have 2+ valency. In a solid state the 2+ valency
can be realized in a number of different ways depending
on the crystal field splittings. In the bulk NiO, Ni-ions
are octahedrally coordinated and the Ni d bands, due to the
resulting crystal field, are split into the t2g and eg subbands,
with the capacity of accommodating respectively three and two
electrons, separately for the spin-up and spin-down channels.
Among the t2g and eg band states one can identify orbitals
of different symmetry and they are associated with the same
angular momentum, l, but different magnetic, m, quantum
numbers. Using the Cartesian nomenclature, the symmetries
of the three states belonging to the t2g set are dxy , dyz and
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Table 1. The summary of all studied 2+ and 3+ SIC configurations,
specifying the spin and symmetry of the chosen localized orbitals for
each. The two digits separated by a hyphen in the first column
identify the configurations. The first digit denotes the valency and the
other simply numbers the consecutive configurations within a given
valence group, namely separately for the divalent and trivalent sets.

Config. Valency Choice of orbitals

2-1 2+ 3t2g
↑ + 2eg

↑ + 3t2g
↓

2-2 2+ 3t2g
↑ + 2eg

↑ + 2t2g
↓ + 1eg

↓
2-3 2+ 3t2g

↑ + 1eg
↑ + 3t2g

↓ + 1eg
↓

2-4 2+ 3t2g
↑ + 2eg

↑ + 1t2g
↓ + 2eg

↓
2-5 2+ 3t2g

↑ + 1eg
↑ + 2t2g

↓ + 2eg
↓

2-6 2+ 2t2g
↑ + 2eg

↑ + 2t2g
↓ + 2eg

↓

3-1 3+ 3t2g
↑ + 2eg

↑ + 2t2g
↓

3-2 3+ 2t2g
↑ + 2eg

↑ + 3t2g
↓

3-3 3+ 3t2g
↑ + 1eg

↑ + 3t2g
↓

3-4 3+ 3t2g
↑ + 2eg

↑ + 1t2g
↓ + 1eg

↓
3-5 3+ 2t2g

↑ + 2eg
↑ + 2t2g

↓ + 1eg
↓

3-6 3+ 3t2g
↑ + 1eg

↑ + 2t2g
↓ + 1eg

↓
3-7 3+ 3t2g

↑ + 2eg
↑ + 2t2g

↓
3-8 3+ 3t2g

↑ + 1eg
↑ + 1t2g

↓ + 2eg
↓

3-9 3+ 2t2g
↑ + 2eg

↑ + 1t2g
↓ + 2eg

↓

dzx , while the two eg states are referred to as dx2−y2 and
d3z2−r2 , for both spin-up and spin-down channels. Of course,
as we have spherical potentials and work in the symmetry
adapted representation, all the states within a given subband
are energetically equivalent. Thus in what follows we refer
only to t2gs and egs for both spin channels. Based on this,
one can consider localized orbitals of different symmetry and
spin and for these orbitals the self-interaction correction is
implemented when describing their electronic structure. In the
LSIC formulation there are the resonant phase shifts associated
with these localized d states that define the scattering channels
to be self-interaction corrected. With respect to different
valency states, one can realize them by varying the number of
localized d states, e.g. for a divalent Ni-ion one would consider
eight localized d electrons, but only seven for a trivalent ion.
For the monovalent Ni-ion one would need to assume nine
localized d electron states, which however is hard to stabilize
as far as self-consistency is concerned.

As mentioned earlier, the SIC–LSDA functional is not
stationary with respect to mixing among the orbitals and
different sets of orbitals will lead to different SIC. Thus one
has to study different configurations of localized orbitals and
minimize the SIC–LSDA total energy with respect to these
configurations to find the ground state energy and valence.
Naturally, one needs to consider not only different symmetries
of the localized orbitals, but also configurations with different
numbers of localized orbitals, giving rise to different valence
states. The reason is that some valence states may lie close
in energy and valence transitions may readily occur e.g. as a
function of pressure. For NiO all the studied configurations of
localized states, namely six giving rise to the 2+ valence and
nine resulting in 3+ valence, are given in table 1.

In order to find the ground state total energy, equilibrium
volume and valence state, we have performed LSIC
calculations for all the configurations listed in table 1. The
results are presented in figure 1, where the total energy
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Figure 1. Total energies of different SIC configurations in NiO
calculated as a function of the lattice constant. The energy zero is set
to the ‘global’ minimum among the different configurations. The
lowest energy is found for the high symmetry state
(3 t2g

↑ + 2eg
↑ + 3t2g

↓), resulting in the valency of 2+.

curves are plotted for all the configurations as a function of
lattice constants. The equilibrium lattice constants of all the
configurations are defined by the minima of the corresponding
energy curves. Specifically, the energies are plotted relative
to the global energy minimum, the 2+ state, obtained when the
five majority Ni ds and three minority Ni t2g states are occupied
and treated as localized [(2-1)]. This result is in agreement with
the FSIC calculations [6, 7, 21] and reflects the first Hund’s
rule in maximizing the spin magnetic moment. This Hund’s
rule ground state is very robust and well separated in energy
with respect to the other 14 curves seen in figure 1, showing
that in the lowest energy configuration, the Ni d states are very
well localized, nearly atomic-like, in the sense that they even
obey Hund’s rules. Furthermore, the robustness of this Hund’s
rule driven ground state comes about due to the crystal field
splitting and the resulting preference to fill the lower lying t2g

states first.
Looking at the remaining 14 curves in figure 1, we

can observe many valence transitions between divalent and
trivalent states as a function of pressure. The general
observation, for all the studied configurations, is that
the configurations which follow the first Hund’s rule in
maximizing the spin moment, independently within the t2g

and eg subbands, have usually lower energies than the
configurations violating this rule. This can be easily seen
in table 2, where all the configurations are listed in the
order starting from the most energetically favourable to most
energetically unfavourable, separately for the divalent and
trivalent scenarios. Among the configurations with equal
number of t2g states occupied, the configurations giving rise
to higher magnetic moments have in general lower energies.
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Table 2. The summary of the main characteristics of all the studied
2+ and 3+ SIC configurations in NiO (cf figure 1). The six 2+
configurations appear as the top six rows and are marked by two
digits separated by a hyphen. The first digit is always ‘2’, marking
the valence, while the second one changes from 1 to 6, marking the
order in which the 2+ configurations appear in the legend of figure 1.
The larger the digit, the more energetically unfavourable the
configuration is. For the 3+ configurations, the first digit is naturally
‘3’, while the second one changes from 1 to 9, again corresponding
to the order in which these configurations appear in the legend of the
figure, reflecting the gradual decrease in energy preference. Here �E
denotes the total energy differences per formula unit relative to the
total energy of the ground state configuration marked as 2-1. �a
gives the relative shift (in per cent) of the equilibrium lattice
constants of all the configurations with respect to the equilibrium
lattice parameter of the ground state configuration. The valency
column is followed by the columns giving the total numbers of
localized states, separately for the (t2g

↑, t2g
↓) and (eg

↑, eg
↓)

subbands. Finally, the corresponding spin moments for the two
subbands, as well as the total one, are also given.

Localized electrons Moments

Config.
�E
(eV)

�a
(%) Valency t2g eg t2g eg Tot.

2-1 0.00 ±0.00 2+ 6 (3, 3) 2 (2, 0) 0 2 ↑ 2 ↑
2-2 0.69 +2.05 2+ 5 (3, 2) 3 (2, 1) 1 ↑ 1 ↑ 2 ↑
2-3 0.84 +0.14 2+ 6 (3, 3) 2 (1, 1) 0 0 0
2-4 1.31 +4.03 2+ 4 (3, 1) 4 (2, 2) 2 ↑ 0 2 ↑
2-5 1.47 +2.12 2+ 5 (3, 2) 3 (1, 2) 1 ↑ 1 ↓ 0
2-6 2.16 +3.93 2+ 4 (2, 2) 4 (2, 2) 0 0 0

3-1 0.67 −0.90 3+ 5 (3, 2) 2 (2, 0) 1 ↑ 2 ↑ 3 ↑
3-2 0.81 −0.78 3+ 5 (2, 3) 2 (2, 0) 1 ↓ 2 ↑ 1 ↑
3-3 1.03 −0.46 3+ 6 (3, 3) 1 (1, 0) 0 1 ↑ 1 ↑
3-4 1.15 +0.37 3+ 4 (3, 1) 3 (2, 1) 2 ↑ 1 ↑ 3 ↑
3-5 1.50 +0.99 3+ 4 (2, 2) 3 (2, 1) 0 1 ↑ 1 ↑
3-6 1.55 −0.68 3+ 5 (3, 2) 2 (1, 1) 1 ↑ 0 1 ↑
3-7 1.77 +2.10 3+ 3 (3, 0) 4 (2, 2) 3 ↑ 0 3 ↑
3-8 2.01 +0.48 3+ 4 (3, 1) 3 (1, 2) 2 ↑ 1 ↓ 1 ↑
3-9 2.17 +2.97 3+ 3 (2, 1) 4 (2, 2) 1 ↑ 0 1 ↑

Also, within the configurations with the same number of
localized d states, the ones that have more localized t2g states
than eg states have generally lower energies.

Inspecting both figure 1 and table 2, one can see that
there is quite a strong dependence of the lattice parameter on
the type of the configuration. Among the 2+ configurations
the tendency for the larger lattice constants is observed.
Among the 3+ valence configurations, we observe no clear
preference as some of them have smaller and others larger
lattice constants. In general, configurations with a complete
filling of eg subbands show a strong dependence of their total
energies on the lattice parameter with an apparent shift towards
larger lattice parameters.

As can be seen in figure 2, there exists some sensitivity
to the equilibrium lattice parameter of the amount of charge
associated with a selected scattering channel for which the SIC
is applied. The charge is calculated using equation (19), and
from this the SIC potential of the given channel is obtained and
added to the effective LSDA potential. One should remember
that in LSIC these charges are calculated only within the
atomic sphere corresponding to the site of the selected channel.
Thus, it is likely that, as seen in the figure, charges of less than
one electron per channel will be obtained. This is unlike in the

Figure 2. The SIC charges, per channel, for the Ni t2g and eg states
corresponding to the ground state configuration of NiO as a function
of lattice constant. The vertical lines denote the experimental
(dotted) and theoretical (dashed) lattice constants, respectively.

FSIC approach where the charges of the orbitals considered
for SIC are calculated from exponentially decaying Wannier
functions optimized on a large cluster of atoms surrounding a
given site. In such a case, charges very close to or even of
exactly one electron are obtained. In the LSIC approach, we
get slightly less than one electron for the majority and minority
Ni t2g-channels, but more than one electron for the majority eg

channel. The latter is caused by hybridization with the oxygen
2s and 2p channels as demonstrated in figure 3, showing
respectively the phase shifts of both majority and minority Ni
t2g and eg channels, and the corresponding DOS and integrated
DOS. In particular, the latter (see figure 3(c)) shows that indeed
there is a small contribution to the SIC charge of the majority eg

state due to the aforementioned hybridization. This behaviour
might also be elucidated based on the analysis of molecular
orbitals (MOs). An MO with the eg symmetry constructed from
the oxygen environment of a given cation and the eg state at this
cation site will have more hybridized character than the MOs
with the t2g symmetry.

The phase shifts displayed in figure 3(a) characterize the
scattering properties of the constituent atoms in the system.
The stronger the scatterer, the more resonant are the phase
shifts, as seen for the Ni d states. In the LSD approximation
due to the spherical symmetry of the scattering potential, there
is only one phase shift associated with all the Ni d electrons
(see figure 3(a)). The situation is different in the SIC approach
due to the orbital dependent potential breaking the symmetry.
By applying SIC to the specific scattering channels, here the
Ni d states, their respective phase shifts get shifted downwards
in energy and the resonances sharpen up considerably as
compared to the LSDA counterparts (figure 3(a)). This agrees
well with the physical picture of localization and a long Wigner
delay time for such SIC states. However, these states do
not become quasi-bound states because their resonances, after
applying the SI correction, still lie well above the muffin-tin
zero. The positions of these resonances coincide with the
respective d peaks in the DOS (figure 3(b)). As can be seen
in the figure, the eg resonance lies lower in energy than the t2g
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Figure 3. The phase shifts, densities of states, and integrated
densities of states at the experimental lattice constant of NiO. Here
(a) shows the Ni d phase shifts calculated within LSDA and
SIC–LSDA. The LSDA phase shifts (brown/violet) are degenerate
for all the m channels, the SIC–LSDA phase shifts split due to the
orbital dependent potential (breaking LSDA symmetry). The
muffin-tin zero VMTZ is marked. In (b) the total DOS (black),
together with the symmetry resolved partial DOS of the Ni 3d states,
is presented. Panel (c) displays the integrated density of all the Ni d
states. The colour scheme is identical in all the subfigures.

resonance due to a more attractive SIC potential resulting from
a larger SIC charge (see figure 2). The shift of the occupied
d states down in energy is associated with an effective upward
shift of the unoccupied states, giving rise to opening up of a
considerable charge transfer band gap seen in figure 3(b). This
is in line with experiment and contrary to the LSDA band gap
which is of the Mott–Hubbard-type (see figure 4). The latter,
as already discussed by Terakura et al [2] is the result of a
small exchange splitting which is comparable to a small crystal
field splitting. The width of the eg band is crucial in stabilizing
the AFII structure in LSDA because the band gap opens up
between the t2g and eg bands.

In figure 4 (panels (a), (b), and (c)), we present the
total and Ni d densities of states for NiO, calculated in the
LSD approximation as well as from the FSIC and LSIC
approaches for the ground state configuration (figure 1 and
table 2). Contrary to LSDA where all the Ni d bands are
found around a tiny band gap, in both the LSIC and FSIC
approaches the occupied t2g

↑, t2g
↓, and eg

↑ bands have moved
to higher binding energies and have become narrower as a
result of the applied self-interaction corrections. Another
effect of SIC is the observed considerable change in the
crystal field splitting as compared to LSD. From figures 4(b)
and (c) one can see that the band gaps, relative positions of
different bands, and their hybridizations agree between both

Figure 4. The symmetry resolved partial DOS of the self-interaction
corrected 3d electron states of Ni: (a) the LSDA calculation,
(b) FSIC (LMTO), (c) LSIC (KKR), and (d) LSIC (KKR) where the
Slater transition state concept has been implemented.

the FSIC and LSIC implementations. The slight shifts in
the positions of the SIC d bands may arise from such details
like, e.g., possible small differences in the calculated SIC
charges. In any case, a fully quantitative agreement cannot be
expected due to the completely different implementations of
the two SIC approaches, and this is in addition to the different
numerical accuracies of the two band structure methods used
for these two implementations. It is reassuring, however, that
despite these apparent differences in both the FSIC and LSIC
implementations, the most relevant trends in DOS and band
gaps are correctly reproduced in both approaches.

Regarding comparison of the LSIC and FSIC results
with experiment, one has to keep in mind that they are
primarily total energy ground state approaches. Whilst the
band gaps calculated using SIC–LSDA are of the correct
charge transfer character [53, 54], the latter is substantially
overestimated. The reason is that the calculated removal
energies of the localized Ni d states do not agree with the
photoemission spectroscopy, lying a few eV lower in energy
than observed experimentally. Consequently, there is not
enough Ni d character hybridized into the predominantly
O p valence band. Now, a question arises whether one
can expect correct removal energies from such an effective
one electron ground state theory like SIC–LSDA. Although
DFT is, strictly speaking, a theory of the ground state from
which spectroscopic information is not easily extracted, the
LDA based band structure is often compared to photoemission
experiments. This is because the effective Kohn–Sham
potentials can be viewed as an energy independent self-energy
and hence the Kohn–Sham energy bands correspond to the
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mean field approximation for the spectral function. In the
SIC–LSDA, this argument only applies to the itinerant states
that are not self-interaction corrected. The localized states
that have been self-interaction corrected respond to a different
potential [55] and the solution to the generalized SIC–LSDA
eigenvalue problem, which is different from the solution to
the Kohn–Sham equations in the LDA, no longer corresponds
to a mean field approximation of the spectral function [56].
To extract spectroscopic information for the localized states,
one needs to take into account screening/relaxation effects.
One of the well known approaches is to perform the so-
called �SCF calculations [57], where one has to compute total
energies of the systems with N , N − 1, and N + 1 electrons
which, however, is computationally non-trivial. To obtain
electron removal energies for the localized Ni d states just from
the self-consistent ground state calculation, a transition state
concept [58] can be used. According to this approximation, the
removal energy of a Ni d state is defined as the average of the
calculated SIC–LSDA and LSDA d state expectation values,
formally

εTS = 1
2 (〈d|HLSDA + VSIC|d〉 + 〈d|HLSDA|d〉). (23)

In effect, the SIC potential is only counted with half of its
strength in the transition state approximation to the removal
energies. The transition state concept was implemented by
Filippetti and Spaldin [59], albeit in a different manner, by
invoking the averaging factor of 1

2 already in the total energy
functional. To compare with photoemission spectra, one can
implement equation (23) after the self-consistency has been
reached in the step of calculating the densities of states, we
have done this for NiO.

In figure 4(d) we show the LSIC DOS obtained for the
NiO ground state configuration with the transition state concept
implemented. The corresponding Bloch spectral function
is presented in figure 5. Although the calculations for the
Bloch spectral function have been performed for the complex
energies with a small constant imaginary part, the figure shows
a well resolved band structure, albeit with a small smearing,
along a number of symmetry directions in the Brillouin zone
of the AFII structure. The density of states calculated in the
transition state approximation shows considerably hybridized
valence band with a substantial amount of Ni d character
at the top of the valence band, thus correcting for the SIC
overestimate of the charge transfer character of the band gap
(compare figures 4(b)–(d)). This strong hybridization effect is
also seen in the band structure of figure 5. The unoccupied
minority Ni eg states are very slightly hybridized with the
O p states. Still, it is rather amazing to see how localized
the unoccupied Ni d states are, considering that no SIC is
implemented for unoccupied band states. Of course, there
exists an indirect effect of SIC on the unoccupied bands due
to the fact that the potential they respond to is the LSDA
effective potential calculated from the charge density of all
the occupied states, of which some have been self-interaction
corrected, notably all the occupied Ni 3d states. However, the
flatness of these two minority Ni eg bands is a consequence of
the considerably reduced phase space for hybridization.

Figure 5. The calculated Bloch spectral function, corresponding to
the Slater transition state concept along a number of symmetry lines
in the AFII Brillouin zone, giving rise to a well resolved band
structure of NiO. The visible small smearing of bands is due to a
small imaginary part of energies in the calculations.

Table 3. SIC configurations minimizing the total energy for the
series of 3d transition metal oxides.

Compound SIC configuration

MnO 3t2g
↑ + 2eg

↑
FeO 3t2g

↑ + 2eg
↑ + 1t2g

↓
CoO 3t2g

↑ + 2eg
↑ + 2t2g

↓
NiO 3t2g

↑ + 2eg
↑ + 3t2g

↓
CuO 3t2g

↑ + 2eg
↑ + 3t2g

↓ + 1eg
↓

5. TMO series

In this section we discuss the LSIC results obtained for the
whole TMO series. We restrict the discussion to the ground
state configurations and properties of these compounds. These
ground state configurations lead to the ground state energies
given in table 3. As in the case of NiO, these energy
minimizing configurations satisfy the first Hund’s rule. The
way they come about may be understood based on simple
physical considerations. For example, in MnO the exchange
splitting on the Mn site is much larger than the ligand field
splitting, and therefore all five Mn d electrons occupy fully the
majority d band, namely the three t2g

↑ and two eg
↑ band states,

leaving the minority bands empty. For the other compounds in
the series, the additional d electrons start filling the minority
subband with one minority t2g state in FeO, two in CoO, and
all three in NiO; while in CuO, in addition the first minority eg

state is also filled, as seen in table 3.
The results for the equilibrium lattice constants and the

corresponding magnetic moments and band gaps calculated
with LSIC for all the TMO series are summarized in table 4
and compared with the LSDA values and the experimental
data. Also, the results of much earlier FSIC (LMTO–
ASA) calculations are quoted, mostly for a qualitative
comparison [6, 7]. The reason is that in those calculations,
minimal basis sets were used and no so-called empty spheres
were considered for improving space filling. To make the
comparison more quantitative and meaningful, for NiO we
also present results of later, more numerically advanced FSIC
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Table 4. The equilibrium lattice constants, local magnetic moments and the band gaps for the 3d transition metal monoxides calculated with
LSIC–KKR and compared to two full SIC–LMTO implementations as well as experimental results. The values for the band gap quoted in the
parenthesis are calculated at the experimental lattice constant. The calculated magnetic moments are spin moments only, the experimental
values are total moments, including orbital contributions which are known to be substantial for FeO and CoO, and non-negligible even for
NiO.

Compound

MnO FeO CoO NiO CuO

Lattice constant (Å)

LSDA (KKR) 4.27 4.13 4.05 4.01 4.08
LSIC (KKR) 4.49 4.39 4.31 4.24 4.27
FSIC (LMTO) [21] 4.18
Expt. 4.446a, 4.44b 4.326c 4.26b,d 4.176e, 4.17b 4.245d

Local magnetic moment on TM (μB)

LSDA (KKR) 4.11 (4.27) 3.26 (3.40) 2.20 (2.33) 0.85 (0.97) 0.00 (0.00)
LSIC (KKR) 4.63 (4.61) 3.68 (3.66) 2.69 (2.68) 1.68 (1.67) 0.76 (0.76)
Expt. (total) 4.79k, 4.58l 3.32m 3.35f, 3.8m 1.77k, 1.90m, 2.20g 0.65n

FSIC (LMTO) [6] 4.49 3.54 2.53 1.53 0.65
FSIC (LMTO) [7] 4.64 3.55 2.59 1.49 0.64
FSIC (LMTO) [21] 1.61

Band gap (eV)

LSDA (KKR) 0.83 (0.73) 0.00 (0.00) 0.00 (0.00) 0.23 (0.23) 0.00 (0.00)
LSIC (KKR) 3.07 (3.25) 3.38 (3.54) 2.78 (2.81) 3.56 (3.76) 2.52 (2.57)
Expt. 3.6–3.8o 2.4h, 2.5i 2.4p 4.3q, 4.0r, 4.3j 1.37s

FSIC (LMTO) [6] 3.98 3.07 2.81 2.54 1.43
FSIC (LMTO) [7] 3.57 3.25 2.51 2.66 1.00
FSIC (LMTO) [21] 3.15

a Reference [63]. b Reference [64].
c Reference [65].d Reference [66].
e Reference [67]. f Reference [60].
g Reference [61]. h Reference [68].
i Reference [69]. j Reference [53].
k Reference [70]. l Reference [71].
m Reference [72]. n Reference [73].
o Reference [74]. p Reference [75].
q Reference [76]. r Reference [77].
s Reference [78].

(LMTO–ASA) calculations [21]. In addition, and for an easy
overview, the LSIC results are plotted in figure 6, together
with the LSDA (KKR) and experimental data for all the TM
monoxides and properties collected in table 4.

Inspecting figure 6 in some detail, one can see that in
general LSIC provides much better agreement with experiment
than does LSDA, although, in more cases than not, the LSIC
values are larger than the experimental data. This is definitely
the case for the equilibrium lattice constants, which are also
larger than the values obtained from the FSIC approach as
seen in table 4 for NiO [21]. In fact, for NiO both FSIC and
LSDA+U give very comparable lattice constants (respectively
4.18/4.19 Å cf [21]). The lattice constants calculated in the
LSD approximation are considerably smaller than those from
experiments, and therefore also from LSIC. This can be easily
explained due to the fact that LSDA treats all the Ni d electrons
as delocalized and responding to the same effective potential,
leading to the overestimate of the bonding in NiO.

Concerning the magnetic moments calculated in LSIC,
they are just spin moments, and thus do not always compare
well with experiment which measure total magnetic moments,

namely, the sum of spin and orbital moments. In the earlier
FSIC (LMTO–ASA) calculations, Svane and Gunnarsson
evaluated not only the spin moments, but also the orbital
magnetic moments for the whole TMO series [6] and they are
substantial in particular for FeO and CoO. Although the orbital
moments of TM ions in solids are usually quenched, in the case
of TMOs, it is expected that correlation effects will preserve
the orbital moments up to a certain value due to a reduction of
ligand crystal field effects at the TM ion sites. For example,
in CoO, the experimentally observed total magnetic moment
of 3.4 μB [60], is quite well reproduced by FSIC with the
calculated orbital moment, μL , of 1.19 μB and spin moment of
2.53 μB [6]. LSIC–KKR gives a slightly higher spin magnetic
moment for CoO (see table 4) than obtained from FSIC
(LMTO) calculations, but by comparison with experiment
would still imply a substantial orbital contribution of about
0.7 μB for CoO. Magnetic x-ray scattering experiments of
Fernandez et al [61] indicate that also the orbital moment
in NiO is not quenched. They observe a spin moment of
1.90 μB and an orbital moment of 0.32 μB, which compares
quite well with the FSIC value of 0.27 μB [6]. Looking across
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Figure 6. The calculated equilibrium lattice constants, band gaps and local magnetic moments on TM sites for the TMO series (AFII
structure). The band gaps and local magnetic moments shown are those corresponding to the equilibrium lattice constant. In contrast to the
experimental magnetic moments the theoretical magnetic moments are spin moments only.

the series, the spin magnetic moments obtained with LSIC–
KKR are slightly higher than the moments from the full SIC
calculations, which may not necessarily be due to the local SIC
implementation but due to the different band structure methods
used in both implementations.

The small size or lack of the band gap is what best
characterizes the breakdown of the LSDA description of the
physics of TMOs. Only for MnO and NiO small gaps are
obtained in LSDA calculations. The LSIC approach improves
the agreement with experiment dramatically and the trends
across the series are predicted correctly, in line with the FSIC
approaches although the LSIC values are in general larger than
those from FSIC.

To summarize this section, we have to say that LSIC
often overestimates the physical properties calculated here
as compared to the respective experimental data. One
possible reason for this may be the use of the atomic sphere
approximation in KKR. While in the LMTO method ASA
works quite well, due to some error cancellations, in KKR
this is most likely not the case. The KKR method is based
on the multiple scattering theory and invokes the so-called ‘on
energy-shell’ formulation implying that a scattering process
is finished before another one will start. With the ASA in
use, this condition would have most likely not been fulfilled.
Of course, more developments are needed, e.g., full potential
implementation or at least the so-called ASA-muffin-tin (MT)
correction [62] to check this possibility further. In this paper,
however, our aim has been to demonstrate that LSIC works for
correlated 3d electron systems, with more than one atom per
unit cell.

6. Vacancy-induced half-metallicity in NiO

In this section we discuss an application of LSIC to study
doping of NiO with cation vacancies. This has been motivated
by a recent study of Ködderitzsch et al [10] who, using FSIC
implemented in the LMTO–ASA method, showed that for

3.125% of cation vacancies in one of the Ni-sublattices of the
AFII NiO realized in a supercell geometry, NiO switches from
an insulator to a half-metal.

As mentioned earlier, being a Green’s function method,
KKR lends itself naturally to such extensions as CPA and
DLM. Thus, with the present application, we aim not only
to compare the LSIC–KKR and FSIC–LMTO approaches, but
also explore how well CPA can reproduce the supercell results.
Using CPA instead of the supercell geometry would not only
reduce the computing effort but also allow access to a whole
range of concentrations that would be difficult to realize in the
supercell approach due to huge sizes required.

Like Ködderitzsch et al [10], we have used a (2 × 2 ×
2) AFII supercell, comprising 32 formula units [10]. Also,
the ASA radii of 2.70 au for Ni atoms and 2.16 au for
oxygen atoms are the same as in the other study [10]. The
concentration of 3.125% of cation vacancies has been realized
by replacing a single Ni cation by an empty sphere in one of
the Ni-sublattices of the supercell. To reduce computational
costs, the calculations have been performed without space
filling empty spheres, with the effect of decreasing the size of
the band gap by about 0.3 eV as compared to the case where
empty spheres were included in the basic AFII unit cell. The
CPA calculations have been performed for the latter cell, but
also without space filling empty spheres and the same ASA
radii as for the supercell approach. To improve on the ASA
in the KKR implementation, we have included the so-called
ASA-MT correction [62] while in LMTO–ASA, the combined
correction term has been used for this purpose [41, 42].

In figure 7, the resulting DOS for Ni0.97O, calculated both
for the supercell [LSIC (KKR)] and with CPA [LSIC (KKR–
CPA)], are compared to the FSIC–LMTO–ASA calculation.
In all the cases we observe a fairly convincing half-metallic
state. The smearing of the CPA curve reflects both the
nature of the effective medium and a small imaginary part
of the energy. In addition to a qualitatively similar DOS, the
total magnetic moments calculated with LSIC (KKR) method
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Figure 7. The spin-decomposed total density of states for NiO,
calculated with LSIC–KKR–CPA for 3.125% of cation vacancies in
one of the Ni-sublattices of the AFII NiO. Presented are DOS curves
calculated in the supercell geometry using respectively, LSIC
implemented in the KKR–ASA and FSIC implemented in
LMTO–ASA. Also shown is the DOS obtained from the KKR–CPA
(ASA) for the same vacancy concentration. The majority spin DOS
is printed on the positive side, while the minority one on the negative
side of the DOS-axis.

in both supercell and CPA approaches are exactly zero, in
agreement with the FSIC (LMTO) calculations. The way the
zero magnetic moment comes about is that by removing a TM
cation one create moment of −2μB, which compensates the Ni
spin moment of 2 μB.

In summary, we have demonstrated that LSIC (KKR)
method provides an adequate description of the vacancy-
induced half-metallicity in NiO, both with the supercell and
CPA approaches. This gives us confidence that one will be able
to explore the whole range of vacancy concentrations not only
on one but both Ni-sublattices, concentrating on energetics and
the existence and origin of half-metallicity. However, such a
study lies outside the scope of the present paper and will be
published elsewhere.

7. Summary and conclusions

We have presented and discussed in some detail a local
implementation of the SIC–LSDA formalism in the multiple
scattering theory. By applying it to 3d transition metal
oxides we have demonstrated that this approach can describe
trends for many physical properties of these compounds and
compares well with earlier implementations of SIC–LSDA
in LMTO–ASA, exploiting repeated transformations between
Bloch and Wannier representations to solve the eigenvalue
problem and reproduce the localized nature of TM d electrons
in these compounds. With the present study we have shown
that LSIC works equally well for the 3d TMOs as for the 4f
systems [15]. The great potential of LSIC lies in its flexibility
and ability to study various types of disorder in combination
with CPA and DLM, opening up possibilities to consider
thermal fluctuations and, through them, finite temperature

phase diagrams and finite temperature magnetism, including
ordering temperatures [15, 16, 52]. Applying the combination
of LSIC with CPA to study changes in the electronic structure
of NiO induced by doping cation vacancies into Ni-sublattices,
we have shown that LSIC can describe chemical disorder
in addition to spin and valence disorder demonstrated in
earlier applications, also at finite temperatures [15, 16, 52].
It is very encouraging that with LSIC one can study also
surfaces, interfaces and even clusters on surfaces, based on the
Green’s functions without the need of invoking large supercell
geometries. In the present paper we have explored only
the ASA implementation in KKR although in the application
to vacancies in NiO, the so-called ASA-MT correction has
also been included [62]. However, in future, we need to
perform a systematic study to compare ASA against the more
appropriate MT approximation, the ASA-MT correction [62],
and eventually the full potential (no shape approximation)
implementation. In this paper, however, our prime goal was
to explain the LSIC method and demonstrate that it works for
correlated 3d electron compounds as well as for the 4f electron
systems.
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